JLS26H

Цифровой датчик температуры и влажности

Внешний вид

Рис. 1 - Датчик JLS26H

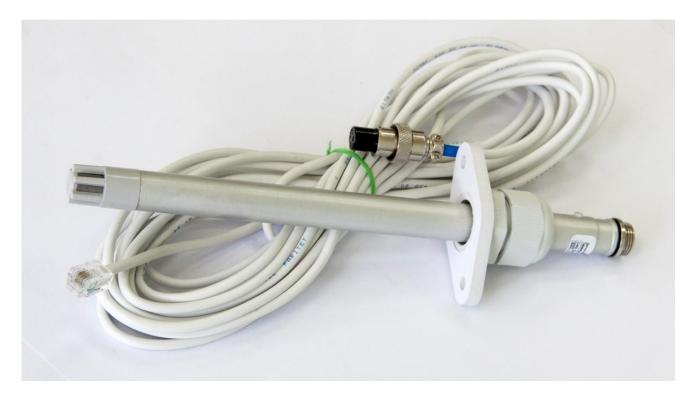


Рис.2 - Внешний вид датчика JLS26H

Назначение

Датчик JLS26H предназначен для измерения температуры и влажности воздуха в воздушных каналах вентиляционных систем.

Датчик подключается по протоколу Modbus RTU и передает значения температуры, относительной влажности и влагосодержания в цифровом виде.

Основные технические характеристики

Интерфейс связи Скорость передачи данных Рабочий диапазон измерения температуры и влажности Погрешность измерения температуры и влажности Напряжение питания, В Modbus RTU; от 1200 до 115200 бит/с; см. рисунок 1; см. рисунок 2; от 8 до 26;

v.1.3 ot 24.01.2020

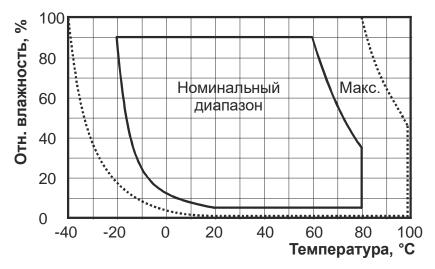


Рис. 3 - Рабочий диапазон измерения температуры и влажности

Рекомендуется эксплуатировать датчик в номинальном диапазоне температур и влажности, как показано на рисунке выше. В этом диапазоне параметры датчика соответствуют заявленным. Допускается кратковременное нахождение датчика в диапазоне «Макс», однако при этом погрешность измерения температуры и влажности увеличивается, особенно критично превышение порога влажности (приведет к погрешности +3 % относительной влажности через 60 часов). Параметры постепенно самостоятельно вернутся в нормальные значения после возврата в номинальный диапазон. При длительном нахождении в диапазоне «Макс» может наблюдаться необратимая деградация погрешности измерения относительной влажности. Также не следует допускать повышения температуры выше +80 °C на время более 5 мин.

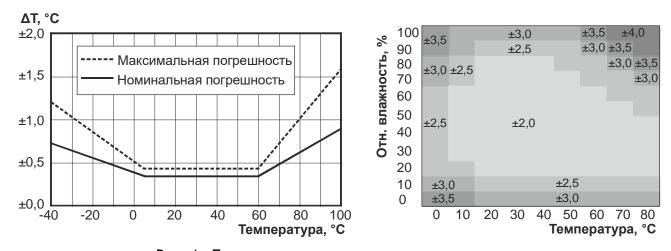


Рис. 4 - Погрешность измерения температуры и влажности

Индикация

На корпусе датчика, рядом с разъёмом имеется светодиод. В нормальном режиме работы светодиод должен мигать.

С частотой около 1 раза в 2 с - при исправном датчике и отсутствии связи, с частотой несколько раз в секунду - при исправном датчике и наличии связи по Modbus.

Монтаж датчика

Датчик монтируется на воздушный канал при помощи кронштейна, входящего в комплект поставки. Кронштейн крепится двумя саморезами и позволяет регулировать установку датчика по глубине.

Диаметр зонда датчика - 14 мм.

В случае, если датчик JLS26H используется для измерения параметров тёплого влажного воздуха (например, вытяжной воздух из помещения), а место установки датчика на воздуховод находится в холодной зоне, то во избежание образования конденсата на зонде датчика рекомендуется наружную выступающую часть датчика утеплить.

Допустимые способы монтажа датчика JLS26H на воздуховод показаны на рисунках ниже. В общем случае при монтаже датчика не допускается располагать датчик зондом

вверх. Однако датчик может быть расположен зондом вверх, если исключена возможность образования конденсата и другие способы попадания воды на измерительный зонд (брызги, дождь, снег и пр.).

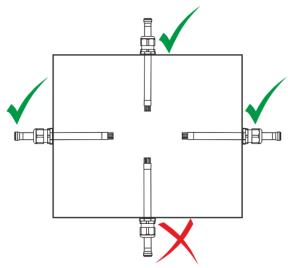


Рис. 5 - Монтаж датчика на прямоугольный воздуховод

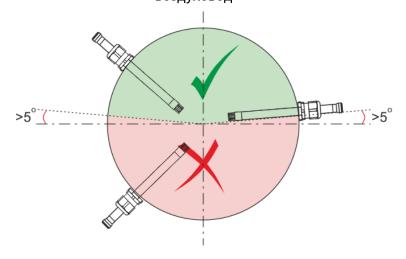


Рис. 6 - Монтаж датчика на круглый воздуховод

Установка параметров связи

Для изменения настроек связи выкрутить внутренности датчика за разъём (ключ на 12) и аккуратно выдвинуть, чтобы появился доступ к переключателям. Движки переключателей переключать аккуратно острым предметом (тонкая шлицевая отвертка и подобное).

Все действия проводить с обесточенным датчиком.

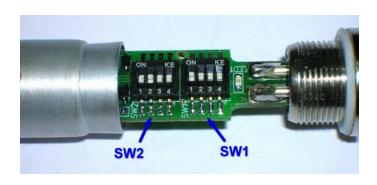


Рис. 7 - Переключатели настройки связи

Таблица 1 - SW1 - адрес

SW1	Адрес	SW1	Адрес
ON 1 2 3 4	 нельзя	ON 1 2 3 4	8
ON 1 2 3 4	1	ON 1 2 3 4	9
ON 1 2 3 4	2	ON 1 2 3 4	10
ON 1 2 3 4	3	ON 1 2 3 4	11
ON 1 2 3 4	4	ON 1 2 3 4	12
ON 1 2 3 4	5	ON 1 2 3 4	13
ON 1 2 3 4	6	ON 1 2 3 4	14
ON 1 2 3 4	7	ON 1 2 3 4	15

Таблица 2 - SW2 - чётность/скорость

SW2	Скорость	SW2	Чётность
ON 1 2 3 4	1200 бит/с	ON 1 2 3 4	Чётность
ON	9600 бит/с	ON 1 2 3 4	Нет
ON	19200 бит/с	ON 1 2 3 4	Нет
ON	115200 бит/с	ON 1 2 3 4	Нечётность

Электрические подключения

На корпусе датчика имеется разъём. Назначение контактов разъёма показано на рисунке ниже.

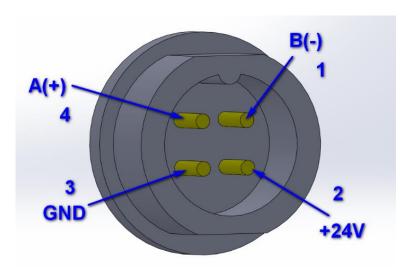


Рис. 8 - Назначение контактов

В комплект поставки датчика входит кабель длиной 5 м, а при необходимости может быть заказан кабель длиной 10 м, 15 м, 30 м На противоположной стороне кабель обжат джеком типа RJ-14. Данный джек может напрямую устанавливаться в разъёмы интерфейсов связи Modbus RTU контроллеров JL205, JL206, JL204C5, RCCU, а также разъёмы кроссовых модулей RSCON-03. Для подключения к другим устройствам данный джек может быть срезан, а подключение может быть выполнено согласно цветовой маркировке жил кабеля.

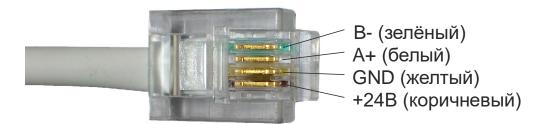


Рис. 9 - Маркировка жил кабеля

Таблица переменных Modbus

Переменные, которые можно прочитать из датчика приведены в таблице ниже. Для удобства переменные представлены в различных форматах. Индексы переменных Modbus пронумерованы относительно 0.

Таблица 3 - таблица переменных

Индекс/Формат	Описание переменной	
INPUT [0]	Наименование: temp	
Формат: SINT16	Температура, °C х100	
INPUT [1]	Наименование: hum	
Формат: UINT16	Влажность, % х100	
INPUT [2]	Наименование: d	
Формат: UINT16	Влагосодержание, г/кг с.в. х100	
INPUT [3]	Наименование: IO_temp	
Формат: IO_DATA	Температура, °C x10, со статусной информацией	
INPUT [5]	Наименование: IO_hum	
Формат: IO_DATA	Влажность, % х10, со статусной информацией	
INPUT [7]	Наименование: IO_d	
Формат: IO_DATA	Влагосодержание, г/кг с.в. х10, со статусной информацией	
INPUT [9]	Наименование: temp	
Формат: FLOAT	Температура, °C, результат во float	
INPUT [11]	Наименование: hum	
Формат: FLOAT	Влажность, %, результат во float	
INPUT [13]	Наименование: d	
Формат: FLOAT	Влагосодержание, г/кг с.в., результат во float	
INPUT [15]	Наименование: temp	
Формат: SINT16	Температура, °С, результат в целых числах	
INPUT [16]	Наименование: hum	
Формат: UINT16	Влажность, %, результат в целых числах	
INPUT [17]	Наименование: d	
Формат: UINT16	Влагосодержание, г/кг с.в., результат в целых числах	

Переменные типа IO_DATA представляют собой структуру. В младшем слове содержится непосредственно значение (Value). В старшем слове в младшем байте статус (Status). Для проверки статуса необходимо на слово наложить маску 0х00FF, чтобы замаскировать старший байт этого значения. Данный формат совместим с внутренним форматом контроллеров JetLogic.

Полный список значений поля Status приведены ниже в таблице:

Таблица 4 - список значений поля Status

Значение	Обозначение	Описание
0	STATUS_FALSE	Лог.0 (для дискретных каналов)
1	STATUS_OK	Все хорошо
2	STATUS_NDEF	Данные не достоверны (опрос не завершен, значение не вычислено и т.д.)
3	STATUS_OFF	Опрос отключен или канал отсутствует физически
8	STATUS_BREAK	Обрыв на линии
9	STATUS_SHORT	КЗ на линии
10	STATUS_OVERLOAD	Перегрузка дискретного/аналогового вывода, перегрузка аналогового ввода

Таблица 4 - список значений поля Status

Значение	Обозначение	Описание
11	STATUS_FAIL	Канал неисправен
12	STATUS_CH_NAL	Ошибка конфигурирования

Гарантийные обязательства изготовителя

Изготовитель гарантирует соответствие устройства заявленным характеристикам при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации - 24 месяца со дня продажи.

Настоящая гарантия не действительна в случаях, когда повреждения или неисправность вызваны пожаром или другими природными явлениями; механическими повреждениями; неправильным использованием; ремонтом или наладкой, если они произведены лицом, которое не имеет сертификата, подтверждающего наличие знаний для оказания таких услуг, а также эксплуатацией с нарушением технических условий или требований безопасности.

В том случае, если в течение гарантийного срока часть или части устройства были заменены частью или частями, которые не были поставлены или санкционированы изготовителем, а также были неудовлетворительного качества и не подходили для товара, то потребитель теряет все и любые права настоящей гарантии, включая право на возмещение.

В случае выхода устройства из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Устройство является технически сложным изделием, его ремонт осуществляется на предприятии изготовителе.